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In the present work, the thermal behavior of a thin slab, under the effect of a
fluctuating volumetric thermal disturbance described by the dual-phase-lag heat
conduction model is investigated. It is found that the use of the dual-phase-lag
heat conduction model is essential at large frequencies of the volumetric distur-
bance. It is found that the hyperbolic wave model deviates from the diffusion
model when w̄ > 0.01ȳq and the dual-phase-lag model deviates from the diffusion
model when w̄ > 0.01ȳT . where w̄ is the angular velocity of the fluctuating wall
temperature, ȳq is the phase-lag in the heat flux vector and ȳT is the phase-lag in
the temperature gradient vector.
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disturbance.

1. INTRODUCTION

For situations involving very low temperatures near absolute zero, for a
heat source such as a laser or microwave of extremely short duration or
very high frequency, very high temperature gradient and extremely short
times, heat is found to propagate at a finite speed. To account for the
phenomena involving the finite propagation velocity of the thermal wave,
the classical Fourier heat flux model should be modified. Cattaneo [1] and



Vernotte [2] suggested independently a modified heat flux model in the
form of

qF(t+ȳq, rF)=−k NFT(t, rF) (1)

where qF is the heat flux vector, k is the thermal conductivity and ȳq is the
phase-lag in the heat flux vector. The constitutive law of Eq. (1) assumes
that the heat flux vector (the effect) and the temperature gradient (the
cause) across a material volume occur at different instants of time and the
time delay between the heat flux and the temperature gradient is the
relaxation time ȳq. The first-order expansion of qF in Eq. (1) with respect to
t bridges all the physical quantities at the same time. It results in the
expansion:

qF(t, rF)+ȳq
“qF
“t
(t, rF)=−k NFT(t, rF) (2)

In Eq. (2) it is assumed that ȳq is sufficiently small such that the first-order
Taylor expansion of qF(t+ȳq, rF) is an accurate representation for the con-
duction heat flux vector. The equation of energy conservation for such
problems is given as

rc
“T
“t
=−NF · qF+g (3)

where r is the density, g is heat generation per unit volume, and c is
the specific heat. Elimination of qF between Eqs. (2) and (3) leads to the
classical hyperbolic heat conduction equation:

1
a

“T
“t
+
ȳq

a

“
2T
“t2
=N2T+

g
k
+
ȳq

k
“g
“t

(4)

To remove the causality assumption made in the thermal wave model,
as proposed in Eq. (1), the dual-phase-lag model is proposed [3–5]. The
dual-phase-lag model allows either the temperature gradient (cause) to
precede the heat flux vector (effect) or the heat flux vector (cause) to
precede the temperature gradient (effect) in the transient process. Mathe-
matically, this can be represented by [3–5]:

qF(t+ȳq, rF)=−k NFT(t+ȳT, rF) (5)

where ȳT is the phase-lag in the temperature gradient vector and ȳq is the
phase-lag in the heat flux vector. For the case of ȳT > ȳq, the temperature
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gradient established across a material volume is a result of the heat flow,
implying that the heat flux vector is the cause and the temperature gradient
is the effect. For ȳT < ȳq, on the other hand, heat flow is induced by the
temperature gradient established at an earlier time, implying that the tem-
perature gradient is the cause, while the heat flux vector is the effect. The
first-order approximation of Eq. (5) yields

qF(t, rF)+ȳq
“qF
“t
(t, rF)=−k 3NFT(t, rF)+ȳT

“

“t
[NFT(t, rF)]4 (6)

Elimination of qF between Eqs. (3) and (6) leads to the heat conduction
equation under the dual-phase-lag effect:

1
a

“T
“t
(t, rF)+

ȳq

a

“
2T
“t2
(t, rF)

=N2T(t, rF)+ȳT
“

“t
[N2T(t, rF)]+

1
k
5g+ȳq

“g
“t
(t, rF)6 (7)

In the absence of the temperature gradient phase-lag (ȳT=0), Eq. (7)
reduces to the classical hyperbolic heat conduction equation as described
by Eq. (4). Also, in the absence of the two phase-lags (ȳT=ȳq=0), Eq. (7)
reduces to the classical diffusion equation employing Fourier’s law.
In the literature, numerous studies [6–13] have been conducted to

investigate the thermal behavior of slabs subject to non-fluctuating heating
sources under the effect of the hyperbolic and the dual-phase-lag heat
conduction models . On the other hand, very few studies [14–16] have
been conducted to investigate the thermal behavior of domains subject to
harmonic fluctuating thermal disturbances under the effect of the hyper-
bolic heat conduction model. Based on the authors’ knowledge, the thermal
behavior of these systems under the effect of the dual-phase-lag heat con-
duction model has not yet been investigated. In the present work, the
thermal behavior of thin layers subject to fluctuating volumetric thermal
disturbances under the effect of the dual-phase-lag heat conduction model
will be investigated. The role that the frequency of the fluctuating volume-
tric disturbance plays in using the appropriate heat conduction model will
be studied.

2. ANALYSIS

Consider a thin layer of thickness 2L for which the boundaries are
maintained at a fixed temperature Tw and within which a volumetric
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heating source g fluctuates in a harmonic manner. Using the dimensionless
parameters defined in the nomenclature, the governing equations are
expressed as

“h

“g
+yq

“
2h

“g2
=
“
2h

“t2
+yT

“
3h

“g“t2
+G+yq

“G
“g

(8)

“h

“t
(g, 0)=0, h(g, 1)=0. (9)

Now, assuming the volumetric heating source G to fluctuate in the follow-
ing harmonic manner,

G=1+E sin(wg)=1+EI{e iwg} (10)

As a result, Eq. (8) may be written as

“h

“g
+yq

“
2h

“g2
=
“
2h

“t2
+yT

“
3h

“g“t2
+1+EI{e iwg}+yqEwiI{e iwg} (11)

where I represents the ‘‘imaginary part of ’’ and the origin of the t-axis is
located at the plate center line.
Equations (11) and (9) assume a solution in the form:

h(g, t)=hs(t)+hu(g, t) (12)

where hs(t) and hu(g, t) satisfy the following governing equations:

“
2hs

“t2
+1=0 (13)

“hs

“t
(g, 0)=0, hs(g, 1)=0 (14)

“hu

“g
+yq

“
2hu

“g2
=
“
2hu

“t2
+yT

“
3hu

“g“t2
+EI{e iwg}+yqEwiI{e iwg} (15)

“hu

“t
(g, 0)=0, hu(g, 1)=0 (16)

Equations (13) and (14) assume a solution in the form:

hs(t)=
1
2 (1−t

2) (17)
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while Eqs. (15) and (16) assume a solution in the form

hu(g, t)=I{W(t) e iwg} (18)

Inserting Eq. (18) into Eqs. (15) and (16) yields

d2W
dt2
−l2W=−b (19)

dW
dt
(0)=0, W(1)=E (20)

where

l2=
wi−yqw2

1+yTwi
and b=

E(1+yqwi)
1+yTwi

(21)

Equations (19) and (20) have the following solution:

W(t)=
b

l2
51− cosh(lt)

cosh(l)
6 (22)

As a result, the governing Eqs. (8)–(10) assume the following solution,

h(g, t)=
1
2
(1−t2)+I 3e iwg b

l2
51− cosh(lt)

cosh(l)
64 (23)

In the following section, results are obtained for three models, which
are the dual-phase-lag model, the hyperbolic model (yT=0), and the
diffusion model (yT=yq=0).

3. RESULTS AND DISCUSION

The parameter l2 in Eq. (21) is normalized in the following manner,

l2

w
=
i− yqw
1+yTwi

(24)

For the parabolic heat conduction model with yT=yq=0, Eq. (24)
becomes

l2

w
=i (25)
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and for the hyperbolic heat conduction model with yT=0, Eq. (24)
becomes

l2

w
=−wyq+i (26)

Also, the parameter b
l2
appearing in the solution, Eq. (22), is normalized in

the following manner,

bw

l2
=
E(1+yqwi)
i−yqw

(27)

Equation (27) is also valid for the hyperbolic heat conduction model. For
the parabolic model, Eq. (27) reduces to

bw

l2
=−Ei (28)

Now, with the notation that

1
1+yTwi

% 1−yTwi, wyT ° 1,

Eq. (24) may be approximated as

l2

w
=i(1+yqyTw2)+(yT− yq) wi (29)

A comparison between Eqs. (25) and (26) reveals that the predictions of the
hyperbolic wave model deviate from those of the parabolic model, by more
than 1% in the normalized quantity l

2

w, when

w̄ >
0.01
ȳq

(30)

On the other hand, a comparison between Eqs. (25) and (29) reveals that
the predictions of the dual-phase-lag model deviate from those of the
parabolic model, by more than 1% in the normalized quantity l

2

w, when

w̄ >
0.01
ȳT
, w̄ >

0.1

`ȳT ȳq
(31)
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Taking into consideration that for most metals ȳT ’ 100ȳq, it may be
concluded that the first criterion in Eq. (31) is the dominant one.
In a similar manner, the parameter bw

l
2 may be approximated as

bw

l2
=−E(1+y2qw

2) i (32)

A comparison between Eqs. (28) and (32) reveals that the predictions of
both the dual-phase-lag and hyperbolic models deviate from those of the
parabolic model, by more than 1% in the normalized quantity bw

l2
, when

w̄ >
0.1
ȳq

(33)

From the three criteria which account for the deviations of the dual-phase-
lag model from the parabolic model, it is clear that the first criterion in
Eq. (31) is the dominant one. On the other hand, the criterion, Eq. (30), is
the dominant criterion for the deviations between the hyperbolic and the
parabolic models. For most pure metals, ȳq ’ 1×10−12s and ȳT ’ 1×10−10s,
and the criterion in Eq. (30) reveals that using the hyperbolic model is
essential when w̄ > 1×1010 rad · s−1. On the other hand, the first criterion in
Eq. (31) reveals that using the dual-phase-lag model is essential when
w̄ > 1×108 rad · s−1. This is an important conclusion which reveals that the
dual-phase-lag model starts to deviate from the diffusion model before the
hyperbolic model. However, the hyperbolic model is used more frequently
because of its simplicity.
Figure 1 shows the harmonic variations in temperature as predicted by

the three models at different dimensionless angular velocities w. It is clear
from this figure that the deviation between the dual-phase-lag model and
the parabolic model appears at dimensionless frequencies w higher than
0.1. Most metal slabs have a ’ 10−4 m2 · s−1 and thickness L=10−7 m,
which is the typical thickness in which the non-Fourier heat conduction
models find applications, and as a result, the deviation from the parabolic
model appears when w̄ > 109 rad · s−1, where w̄=aw

L2
. This agrees very well

with the predictions of the first criterion in Eq. (31). Figure 1 shows that
the deviation of the dual-phase-lag model from the parabolic model
appears at lower frequencies as compared to the deviation of the hyperbolic
model from the parabolic model. As clear from Fig. 1, the hyperbolic
model starts to deviate from the parabolic one at dimensionless frequencies
higher than 1 which correspond to w̄ > 1010 rad · s−1 . Also, this agrees very
well with the previous conclusions obtained from the criterion of Eq. (30).
However, it should be noted that such high frequencies are unattainable

The Dual-Phase-Lag Heat Conduction Model in Thin Slabs 1675



Fig. 1. Harmonic variation in the slab temperature as predicted by the three
models. (t=0.0, yq=0.01, yT=1.0, E=1.0).

experimentally. The temperature amplitude versus angular frequency for
the three models is shown in Fig. 2. It is clear from Fig. 2 that as the
angular frequency increases, the intensity of the thermal response decrea-
ses. This is due to the fact that the total heat absorbed by the slab from the
heating source is proportional to 1

w . It is clear from this figure that the

Fig. 2. Temperature amplitude versus angular frequency in the slab as predicted
by the three models (yq=0.01, yT=1.0, E=1.0).
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Fig. 3. Temperature spatial distribution within the slab as predicted by
the three models (w=.01, g=1.0, yq=0.01, yT=1.0, E=1.0).

deviation between the hyperbolic and the diffusion models is insignificant
especially at small w, while the deviation of the dual-phase-lag model from
the other two models is significant over a wider frequency ranges. The
phase lag increases as w increases. However, this increse saturates as w
increases and reach an asymptotic value.
The spatial distribution of the temperature at different frequencies and

for the three models is shown in Figs. 3 to 5. It is clear from these figures
that the deviation between the dual-phase-lag model and both the para-
bolic and hyperbolic models is larger far from the slab boundary. The

Fig. 4. Temperature spatial distribution within the slab as predicted by
the three models (w=0.1, g=1.0, yq=0.01, yT=1.0, E=1.0).
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Fig. 5. Temperature spatial distribution within the slab as predicted by
the three models (w=1.0, g=1.0, yq=0.01, yT=1.0, E=1.0).

cooling effect at the slab boundary reduces the differences in temperature
among the predictions of the three models at these locations.

4. CONCLUSION

The deviations among three macroscopic heat conduction models
under the effect of a fluctuating volumetric heating source, which heats a
thin layer, are investigated. These three models are the parabolic, hyper-
bolic, and dual-phase-lag heat conduction models. The heating disturbance
is assumed to fluctuate in a harmonic manner. It is found that using the
dual-phase-lag heat conduction model is essential at large frequencies of
the surface disturbance. It is found that the hyperbolic wave model deviates
from the diffusion model when w̄ > 0.01ȳq and the dual-phase-lag model
deviates from the diffusion model when w̄ > 0.01ȳT . The dual-phase-lag model
starts to deviate from the parabolic model at lower frequencies as
compared to deviations of the hyperbolic model from the parabolic model.
The phase-shift between each two of the three models increases as the
frequency increases but it reaches an asymptote at very high frequencies.

NOMENCLATURE

c specific heat capacity
g heating source per unit volume, go(1+E sin(w̄t))
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go amplitude of the heating source
G dimensionless volumetric heating source, ggo
i imaginary number,`−1
k thermal conductivity
2L slab thickness
q conduction heat flux
t time
T temperature
Tw wall temperature
W temperature spatial amplitude
x axial coordinate

GREEK SYMBOLS

a thermal diffusivity, krc
E amplitude of fluctuation in heating source
g dimensionless time, at

L2

r density
h dimensionless temperature, k(T−Tw)

L2go
ho amplitude of dimensionless temperature, k(To −Tw)

L2go
ȳq phase-lag in heat flux
yq dimensionless phase-lag in heat flux, aȳq

L2

ȳT phase-lag in temperature gradient
yT dimensionless phase-lag in temperature gradient, aȳT

L2

t dimensionless axial coordinate, xL
w̄ angular velocity of the fluctuating wall temperature
w dimensionless angular velocity of the fluctuating wall

temperature, w̄L
2

a
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